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Abstract

Basically, bundle theories and substratum theories are metaphysical
accounts of the following features of concrete particulars: i) their con-
stitution from more basic entities, ii) their individuality, and iii) their
possession of properties. When connected to quantum mechanics, most
discussions focus on the problem of individuality of quantum particles. In
this chapter, we shall argue that irrespective of how those theories fare on
this task, both fail on accounting for the constitution and property pos-
session when quantum mechanics enters the stage. The Kochen-Specker
theorem of quantum theory strikes directly against the account of prop-
erty possession and constitution provided by the current versions of those
metaphysical theories. Two major claims shall result from our investiga-
tions. First, that a revision on the nature of particular entities will have
to be advanced in case one still wishes to hold that quantum entities are
particulars. Second, that claims concerning metaphysical underdetermi-
nation between individuality and non-individuality will have to be revised
in the light of the restrictions imposed by the Kochen-Specker theorem.

Keywords: constitution; bundle theory; substratum; Kochen-Specker
theorem.

1 Introduction

Two of the most familiar approaches to the nature of particular concrete objects
in metaphysics are the bundle theory and the substratum theory (see Loux 2006;
French and Krause 2006, chap. 1).1 Both theories are thought to account for
three related features of such particulars:2

i) their constitution in terms of more basic entities,

ii) their individuality, explained in terms of their constitution and in terms
of their ingredients, and

1These are not the only theories available, of course, but we shall confine ourselves to these
theories in this paper.

2For the sake of brevity, whenever we mention a particular in this paper, it will be under-
stood that it is a concrete particular, unless stated otherwise.
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iii) the predicational nexus, accounting for how is it that a particular may be
said to bear or have a property.

Roughly, bundle theories conceive of concrete objects as being entirely consti-
tuted by the properties they instantiate, from which it results that objects are
nothing but a bundle or cluster of their co-instantiated properties. On the
other hand, substratum theories conceive of concrete objects as being consti-
tuted by the particular’s instantiated properties and by a further ingredient,
a particular of non-qualitative nature, a self-individuating substratum or bare
particular. Sometimes, instead of positing a particular object such as a sub-
stratum, it is also proposed that each object has only properties involved in its
constitution, but that a special property of a non-qualitative nature, a haecceity
or individual essence, is also present. On this account, each object has its own
haecceity, which accounts for its individuality, and this makes it more similar
to the substratum approach than to the bundle approach (and that is why we
shall treat it so too). Both theories account for the fact that an object has a
property by claiming that the property constitutes the object in some sense;
their main difference concerns the individuality of particulars: is the individual-
ity of a particular accounted solely by their qualitative features, or is a further
non-qualitative ingredient needed?

Just to be sure: the problem of individuality is a metaphysical problem. It
concerns explaining what is it that makes a particular object that object that
it is, distinct from everything else (for a careful discussion of the terminology
associated with individuality, see Krause and Arenhart 2018). Bundle theories
advance the claim that properties are enough for that. Substratum theories
suggest the need for a special ingredient. This is specially important, because
so far, the dialectics of the debate between these theories concerns mainly the
issue over the problem of individuality. For instance, substratum theorists will
quickly point out an intimate relation between bundle theory and the highly
controversial Principle of the Identity of Indiscernibles (PII), whereas bundle
theorists will claim an incoherence on the very idea of an elusive substratum,
lying beyond all properties, constituting objects. Either way, no consensus has
been achieved and the nature of concrete particulars continues to raise important
issues within metaphysics. We believe, however, that fundamental physics is
welcome in the debate and may bring some ideas to enrich and, potentially,
enlighten the controversy. Our claim is that physics has important lessons for
those theories on what concerns property possession, not only individuality.

This shift of focus is important, because in Quantum Mechanics (QM), the
state of a physical system is labeled by a vector pertaining to a vector space.
Traditionally, the same vector is to be regarded as a description of the physical
object under study. Metaphysically speaking, this object could, in principle, be
viewed through the lenses of both bundle and substratum theories (given that
those theories should apply to every object). Nonetheless, it has been argued
that, because of the commitment of bundle theories with the truth of the PII,
a false instance of the latter would result in the falsehood of the former. As a
matter of fact, QM is said to deal with situations in which the stronger versions
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of PII are demonstrably false, hence implying that bundle theories should be
rejected in favor of a substratum framework in the context of quantum indi-
viduality (see French and Krause 2006, chap. 4). Yet, this is only part of the
story. We will argue, following recent work done on invariance of quantum
states and the Kochen-Specker (KS) theorem (de Ronde and Massri 2016), that
both bundle and substratum theories fail to provide a satisfactory account of
quantum mechanical entities. These results will drive us into further discus-
sions regarding the nature of quantum objects and steer us towards a revision
over the customary ways of understanding the metaphysics of concrete particu-
lars. Also, this will allow us to sidestep typical discussions focusing on the role
of the Identity of Indiscernibles in these discussions and extract some lessons
concerning metaphysical underdetermination in quantum mechanics.

The paper is structured as follows: in section 2, we delve into the two meta-
physical theories of objects under study here and how they are related to Classi-
cal Physics. In section 3, we introduce key aspects of QM, and the KS theorem
enters the scene to set the stage for our arguments. Section 4 brings together the
ideas fomented in the previous sections and establishes a quantum mechanical
attack on both bundle and substratum theories. We finish our paper in section
5, discussing further problems, specifically aiming at the current understanding
of underdetermination of metaphysics by physics in light of our findings.

2 Metaphysical theories of particulars and Clas-
sical Physics

2.1 Bundle and substratum theories

As mentioned in the introduction, we shall focus on two perspectives related
to the understanding of concrete particulars. Both theories are concerned with
constituting particulars from more basic ingredients. In this sense, both ap-
proaches deal with the problem of providing for the nature of a particular in
terms of more basic entities that constitute the particulars; in this sense, these
are reductive approaches: concrete particulars are somehow reduced to more
basic ingredients that are metaphysically more fundamental, so that concrete
particulars need not be part of the fundamental inventory of reality. Demirli
(2010, p. 2) explains as follows the problem of constitution:

In answering the internal constitution question, we may begin an
inquiry about the various categories that go into the composition
of individual substances and hope that at the end of this inquiry
we will come up with a list of ingredients that constitute various
individuals. Just as a certain recipe in a cook book provides us with
a list of ingredients and instructions for mixing these ingredients
together, we may maintain that the list or the recipe of individual
substances — God’s recipe book, so to say — will tell us what items
from various categories are used, and how these items are combined.
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Of course, unless one specifies what ‘constitution’ and ‘composition’ mean, the
problem and any of its answers will remain on a very abstract and perhaps
metaphorical level. Typically, ‘constitution’ is specified in other terms, such as
set theoretic (a concrete particular is a set whose members are its ingredients)
or mereologic (a concrete particular is a mereological sum of its ingredients),
each with its own problems, but we shall not be concerned with specifying any
particular version of constitution here (see discussion and further references in
Benovsky 2016 and in Jago 2018). What is relevant for us is that the approaches
with which we shall be concerned here are primarily approaches to the question
of what goes on in the constitution of a particular.

Bundle and substratum theories alike conceive of objects as constituted or
composed by properties instantiated by the particulars. In this sense, it is
common to understand properties either as universals or as tropes, and each
option will give rise to distinct versions of both bundle theories and substratum
theories. We shall continue to speak in neutral terms of properties, leaving
it open whether these properties should be conceptualized as universals or as
tropes. Each version has its own problems and virtues, but it will not be relevant
for our purposes whether one or another route is taken (for a recent account of
the discussion, see Benovsky 2016). Besides agreeing that properties constitute
particulars, bundle theories and substratum theories differ, however, because
while bundle theorists claim that the properties exhaust the constitution of
the particular, the substratum theorists posit a further underlying ingredient
constituting those particulars.

That difference may be put as follows: the bundle theorist wishes a one
category metaphysics, only properties are fundamental, and they are employed
to constitute particulars. Following Loux (2006, p. 107), this is encapsulated by
the principle BT:

BT Necessarily, for any concrete entity a, if for any entity, b, b is a constituent
of a, then b is an attribute.

The substratum theorist is not willing to embrace this one category meta-
physics, and adds a further ingredient (rejecting BT), a substratum, which is a
self-individuating particular, not described in terms of qualities. Perhaps sub-
stratum theory (ST) could be defined as follows:

ST Necessarily, for any concrete entity a, if for any entity b, b is a constituent
of a, then b is either an attribute or else b is a bare particular, and, if b is
a bare particular, then b is unique in the constitution of a.

The main reason for adding such a further ingredient in ST concerns individu-
ality and property bearing. It is typically thought that BT is committed to a
version of the Principle of the Identity of Indiscernibles (PII):

PII Necessarily, for concrete objects a and b, if for any property P , (P (a) ↔
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P (b)), then a = b.3

However, as argued by Rodriguez-Pereyra (2004), the bundle theory BT may
live without PII, or it may even be compatible with the falsity of PII, provided
that the bundles are understood as bundles of universals. In this case, one
may distinguish a bundle (as a pack of universals) from its numerically distinct
instances (see also Rodriguez-Pereyra 2004 for further options on defending
bundle theory, as well as Demirli 2010; a further version of the bundle theory
is defended in Jago 2018). We need not enter into these controversies, given
that we shall not be primarily concerned with the problem of individuality of
particulars. As we have mentioned, the dialectics of the debate between bundle
theory and substratum theory focuses mainly on the issue of individuality. The
possibility of a bundle accounting for scenarios such as Max Black’s (1952) two
sphere world,4 or of quantum mechanics’ indiscernible particles, are called forth,
and the substratum theorist claims that a further ingredient is always needed
(for the case of quantum entities, see French and Krause 2006, chap. 4; Arenhart
2017).

As we mentioned, we shall focus mostly on the explanation that each of these
theories provide for property exemplification. Recall that both theories agree
on how to account for this: a property is possessed by a concrete particular
provided that the property is part of the composition of the particular (i.e., is
an ingredient of the particular, using Demirli’s metaphor). As Jago (2018, p. 3)
puts it for the case of bundle theory, the Property Possession for Bundles (PPB)
is explained thus:

PPB A concrete particular a possesses property P if, and only if, P is a member
of the a-bundle.

Given that ‘being a member of the a-bundle’ is an explanation of the very idea
of constitution, this may be generalized to take into account also the case of the
substratum approach. We shall call it simply the ‘Property Possession’ (PP):

PP A concrete particular a possesses property P if, and only if, property P
constitutes a.

From PP the more specific PPB follows when one specifies that a is a bundle of
properties and properties constitute such entities by being members of the bun-
dle. Also, from PP it follows (assuming basic logical inferences) that whenever
a property does not constitute a concrete particular, it is not possessed by that

3One could work with at least three different versions of the PII, each of it takes the set
of relevant properties to mean something slightly different. For instance, the weakest form,
PII(1), states that it is impossible for two individuals to possess all properties and relations in
common; the next strongest, PII(2), precludes spatio-temporal properties from its description;
and the strongest of all, PII(3), encloses only monadic, non-relational properties. Further
distinctions could be provided for stronger versions of the PII, such as restrictions to intrinsic
properties, or perhaps for what are called ‘pure’ properties. For a discussion, see Adams
(1979).

4In this example, recall, two isolated iron spheres, separated two miles apart from each
other and indistinguishable in all their properties are, in fact, seen to be numerically distinct.
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particular. In this sense, one could claim that insofar as our two target theories
adhere to a form of PP, it will be metaphysically determined, for each property
P , whether P is possessed or not for each particular a. That means that it is
determined, for each particular, by the very nature of the particular, whether a
property is possessed or not possessed by that particular. Mittlestaedt (2009,
2011) called that the ‘Principle of Thoroughgoing Determination’ (PTD):

PTD Given a property P and a concrete particular a, either a possesses P or
else it does not posses P (that is, a possesses the complement of P , which
we shall denote by ¬P ).

In other words, if a list of every property P available for an object a could be
provided, one could, at least in principle, determine for each of such properties
whether a has P or does not have P .

As we have mentioned, we shall shift the focus from individuation to the
bearing of properties. We shall operate on a very general level (not assuming
anything about the nature of the properties — whether they are tropes or uni-
versals — and not assuming any specific account of constitution — set theoretic,
mereologic, or other). Our claim will be that, insofar as these theories adhere to
PP and, consequently, to PTD, they are ruled out by QM. We begin, however,
by making a detour in Classical Physics, in order to illustrate how well these
principles work there.

2.2 The way to Classical Physics

One could argue that the bundle approach was favored by Classical Physics
because some aspects of the latter made clearer the role of properties constitut-
ing objects: its formalism centers around the main idea of physical quantities.
Although defensible, such position would undermine the metaphysical details
just discussed. It is uncontroversial that Classical Physics takes some form of
objective (i.e., preexistent) approach to physical observables, indeed making it a
cornerstone to the metaphysical underpinnings of physical theories prior to the
20th century. In the classical framework, properties gain the status of definite
physical quantities, that is, well-defined values on a certain interval of the real
line R (e.g., the mass m of a billiard ball, its charge q, the components xj of its
position vector x, so forth).5 Consequently, measurements are unproblematic
and provide us with nothing but a revelation of the physical system’s objective,
actual properties. An object could then be exhausted into an amalgamation
of definite, real values of physical observables through which Classical Physics
asserted us the object did possess beforehand.

One encodes physical observables into the mathematical notion of real-valued
functions over a space S of states of a physical system, with the understanding
that, at any given time, a unique member s ∈ S can be assigned to the system.
Hence, to each physical observable A there corresponds a function fA : S → R

5Note that mass and charge are both examples of internal or intrinsic physical quantities:
they refer to the constitution of the thing itself; whereas position, velocity, etc, are external
physical quantities whose values depends on a given spacetime framework.
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such that fA(s) is the value which A possesses when the state of the system is
s.6 Also, the state s′ of a system at time t′ is determined uniquely by the state
s at any earlier time t < t′ via dynamical maps

T : S → S
s 7→ s′ ; ∀ s, s′ ∈ S ,

(1)

essentially bringing determinism and the principle of causality to the classical
picture. If S is the state space of an N -particle system, then the state is labeled
by points (q1, q2, . . . , q3N ; p1, p2, . . . , p3N ) ≡ (qk, pk) in a 6N -dimensional phase
space, where qk and pk are the respective canonical coordinates. The dynamical
law is then given by the Hamiltonian H(qk, pk) and the canonical equations

dqk
dt

=
∂H

∂pk
,

dpk
dt

= −∂H
∂qk

; k = 1, . . . , 3N. (2)

The equations in (2) are first-order differential equations and hence determine
uniquely the state (qk, pk) at any time t (provided we have the system’s initial
conditions), therefore satisfying the requirements of the dynamical maps in (1).

The objectivity feature of properties, that is, the observer-independent char-
acter of Classical Physics is captured nicely by the notion of invariants: physical
quantities having the same value for any reference frame. The transforma-
tions between different frames of reference have the mathematical property of
constituting a group. Since the laws of both classical mechanics and special
relativity theory are invariant against the transformations of the Galilei and
Poincaré group, respectively, it follows that, in Classical Physics, both nomo-
logical (static) and dynamical properties are consistently translated between
distinct frames of reference and, additionally, it allows one to speak meaning-
fully of independent, preexistent physical observables: an actual state of affairs
(ASA).7

Let fA be the value of an observable A in the state s ∈ S and fA ∈ ∆,
where ∆ ⊂ R is a Borel subset that represents the real-valued interval of an
observable’s values. Then, equipped with the usual logical operators ∧, ∨, ¬
and ⪯ for material implication, it is instructive to construct the mapping

Φ : B(R) → LC (3)

from the Borel subset B(R) onto the Boolean lattice LC of propositions Pi ∈ LC

such that Pi = 0 or Pi = 1, effectively creating a whole structure of definite
yes-no (true- or false-valued) propositions corresponding to the presence or ab-
sence, respectively, of physical observables’ values (properties) associated with
a system in a state s. In other words, a version of the PTD is justified !

6Strictly speaking, fA is a Borel function and, depending on the observable A, it may
be required to be measurable, or continuous, or smooth. Further, the set S (also known in
classical statistical physics as the space of microstates) is a symplectic manifold which, in
particular, corresponds to the usual phase space of a one-dimensional point particle when
S = R2 (Döring and Isham 2010).

7We are adopting the terminology advanced by de Ronde and Massri (2016).
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Here is where classical logical structure (i.e., Boolean logic) gets incorporated
into the mathematical structure of Classical Physics, and one can actually talk
of a given proposition Pi as an assignable property. Further, one is now able
to coherently define an individual object by means of the dynamical maps T (s)
and the invariance of definite properties Pi (nomological and dynamical): any
state s ∈ S labeling a collection of properties Pi is uniquely identified, and
continually re-identified through its dynamical trajectory in the classical state
space S . Moreover, the notion of an individual persists even when one is dealing
with indistinguishable physical systems, only this time the argument relies on
either a principle of impenetrability (non-overlapping of spatio-temporal tra-
jectories) or particle permutation via Maxwell-Boltzmann statistics.8 Based on
that, it becomes clear that one could make sense of the individuality of classical
particles within the background of either a weak version of the PII (allowing
spatio-temporal properties to account for the qualitative distinction) or through
something that goes beyond all properties, a substratum. So, although it is true
that Classical Physics concentrates around the idea that physical observables
are objectively determined for classical systems, it is neither obvious nor com-
pelling to assert that its formalism is committed to bundle theory. Admittedly,
Classical Physics seems merely to somehow suggest the individuality of phys-
ical systems, independently of whether that individuality is achieved through
bundle or substratum theories of objects. Indeed, the present situation consti-
tutes a dilemma known as the underdetermination of metaphysics by physics, in
which a physical theory formalism is compatible with two or more metaphysical
theories; in our case, a classical physical system could be individuated by both
bundle and substratum theories of objects, but no physical argument can be
made in favor or against one or the other.

2.3 Bundle and substratum theories (revisited)

On what concerns some attempt to look for help from physics on deciding which
is best, bundle or substratum, it appears we are back to square one: Classical
Physics does not have the resources to decide between bundle or substratum
frameworks. It does satisfy the PTD, which both theories do endorse, and even
more: on what regards the individuality of classical indistinguishable systems,
one is left between the weakened form of PII allowing for spatial properties to
account for individuality or the substratum’s elusiveness. The choice for which
is better or more appropriate requires a digression into controversial metaphys-
ical issues, and not more investigation into physics. The latter is silent about
the relevant issues, and that is why the situation we face is called ‘the underde-
termination of metaphysics by the physics’. One could try to break the under-
determination by claiming that bundle theory, allowing for spatial properties to

8Physical systems, such as particles, are said to be indistinguishable in that they possess
the same state independent (intrinsic) properties (mass, charge and spin — the nomological
properties in de Ronde and Massri 2016). Given two particles A and B, and two microstates
1 and 2, particle permutation on the states yields different outcomes regardless of A and B
being indistinguishable, hence, A and B are individuals (French and Rickles 2003).
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account for individuality, is a far more economic proposal, avoiding substratum
(this is suggested in French and Krause 2006, chap. 2). However, that kind of
claim does not come form a necessity of physics itself, and as such, will not move
the substratum theorist, which has her own battery of metaphysical arguments
against the bundle theory.

It should be clear by now that both bundle and substratum theories are
distinct metaphysical positions regarding the nature of concrete particulars;
but it would be a mistake to fully embrace their divergences and, in the process,
neglect the common ground they stand. Here is why: prior to their farewell,
bundle and substratum theorists would concede in mutual agreement on which
properties a given concrete particular instantiate; they would always converge
on which properties to assign to a certain object (i.e., which corresponding
propositions Pi are well-defined and attached to a system). The bifurcation
only happens when one of them stays true to the cluster of properties assigned
to an object, whereas the other decides to go beyond the mere qualities observed
and proposes a new particular ingredient gluing them all together, establishing,
at last, an individual through the very existence of that ingredient. It is at
this moment that one can say with certainty that the bundle and substratum
theorists are each speaking their own language. Yet, no matter how foreigner
one’s dialect may sound to the other, both share the same proto-language: each
of them is committed to the basic operation of, initially, assigning a collection of
definite properties to a given system; a set of well-defined propositions Pi (this
is the PTD at work, of course).

In fact, such fairly overlooked move contains the key to our main argument
against bundle and substratum theories; an argument that goes beyond the
usual controversies surrounding the PII or the substratum’s transcendence by
looking at the conceptual frameworks both theories are founded on, namely, the
PTD. However, to materialize such endeavor, we shall bring quantum theory
and, in particular, the KS theorem into the discussion. Therefore, we now turn
our attention to QM.

3 Quantum theory and the KS theorem

3.1 The way to QM

Quantum theory was born out of a body of empirical results and assumptions
that were gathered in the early 20th century and systematically organized by
the end of the century’s first quarter. The founding fathers of QM laid out a
mathematical structure that, more than a hundred years later, is still able to
match theory and experiment with the utmost precision. But, despite exper-
imental success, on what regards our understanding of the theory, a hundred
years have elapsed with no scientific nor philosophical consensus on what ex-
actly quantum theory is talking about; that is, its ontology and its metaphysical
counterpart are still an open question.

The general structure of QM may be approached through the lenses of a
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‘minimal interpretation’, a pragmatic approach that takes quantum theory as
an algorithm for predicting the probabilistic distributions of measurement out-
comes done on suitably prepared copies of a given physical system. Although not
stressed as fundamental, the probabilities are interpreted as the relative frequen-
cies of possible outcomes if corresponding measurements were to be repeated a
sufficiently large number of times. In sharp contrast to Classical Physics, noth-
ing is said about whether a system possesses values for a physical observable
prior to its measurement.

Traditionally, the minimal interpretation is mathematically translated via
complex Hilbert spaces that contain all possible quantum states of a system.
It may be a finite- or an infinite-dimensional space, but for our purposes we
will be mainly dealing with the former structure. To a given physical system
we associate a separable Hilbert space H, such that normalized vectors |ψ⟩ ∈
H correspond to the states of the system.9 To compose multiple quantum
mechanical systems, say N particles, we employ the tensor product between all
the respective Hilbert spaces of each system, that is, H = H1 ⊗H2 ⊗ · · · ⊗HN .
Accordingly, the corresponding composite quantum state |ψ⟩ ∈ H is the tensor
product of all |ψi⟩ ∈ Hi,

|ψ⟩ =
N⊗
i=1

|ψi⟩. (4)

Physical observables are represented by self-adjoint linear operators on H.
The expected result of measuring an observable A in a state |ψ⟩ ∈ H is given
by ⟨ψ|Â|ψ⟩, where Â is the corresponding operator of A. The spectral theorem
guarantees that, to any self-adjoint operator Â in an n-dimensional Hilbert
space H, there exists an orthonormal basis {|a1⟩, |a2⟩, . . . , |an⟩} ⊆ H consisting
of eigenvectors of Â such that

Â =

n∑
i=1

ai|ai⟩⟨ai| ; ai ∈ R. (5)

The values ai constitute the spectrum of the bounded operator Â and each one of
them corresponds to the possible result of a (sharp) measurement of A. Given a
general state |ψ⟩, the probability of obtaining am as the measurement outcome
of A is determined by the Born rule |⟨ψ|am⟩|2. To that effect, one can benefit
from the expansion theorem which states that any vector |ψ⟩ ∈ H has a unique
expansion

|ψ⟩ =
n∑

i=1

ci|ai⟩ ; ci = ⟨ai|ψ⟩ ∈ C, (6)

9Technically, pure states as opposed to the mixed states

ρ̂ =
∑
i

pi|ψi⟩⟨ψi| ; 0 ≤ pi ≤ 1,

of the more general ‘density matrix’ formalism of QM. Also, two vectors |ψ⟩, |ϕ⟩ ∈ H which
differ by a complex factor, that is, |ψ⟩ = α|ϕ⟩ ;α ∈ C, correspond to the same (pure) state
since global phases are immaterial in QM.
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to which it follows from Born’s rule that the probability of obtaining am is |cm|2.
In the absence of external influences (i.e., in a closed system) the dynamical
evolution of quantum systems is determined by the self-adjoint Hamiltonian
operator Ĥ : H → H, such that the time development of any state |ψ(t)⟩ is
given by the time-dependent Schrödinger equation

iℏ
d

dt
|ψ(t)⟩ = Ĥ|ψ(t)⟩ ; ∀ |ψ(t)⟩ ∈ H. (7)

Note that, as with the classical dynamical maps T : S → S and the canoni-
cal equations in (2), the dynamical law governing closed quantum mechanical
systems is a first-order differential equation; therefore, given proper initial con-
ditions, the state |ψ(t)⟩ at any later time is uniquely determined by solving
(7). In this sense, QM is as deterministic as Classical Physics. However, in gen-
eral, the Principle of Thoroughgoing Determination (PTD) fails in the quantum
regime, so that there is no way to guarantee a positive or negative stance re-
garding the proposition (representing property attribution) Pi in QM, for any
Pi. To see this, let us take a closer look at the structure of physical observables
in quantum theory.

Starting out with equation (5), we define the projection operator P̂i such
that

Â =

n∑
i=1

ai|ai⟩⟨ai| ≡
n∑

i=1

aiP̂i. (8)

Projection operators P̂ are operators that project onto some subspace of the
Hilbert space. They satisfy the properties of being self-adjoint and idempotent,
that is, P̂ † = P̂ and P̂ 2 = P̂ , respectively. As such, their only eigenvalues are
manifestly 0 and 1; therefore, they can be understood as propositions about
properties. For instance, the operator P̂m represents an observable whose nu-
merical value is defined to equal unity if the result am is obtained whenever
A is measured (and defined to equal zero otherwise). Thus, Pm is a positive
proposition stating the value am to A and, accordingly, ¬Pm is its negation.
In Classical Physics, the Boolean lattice LC guarantees that either Pm or ¬Pm

applies (the PTD is in action). Now, let Q̂j = |bj⟩⟨bj | be a projection operator

of the spectral decomposition of a self-adjoint operator B̂ corresponding to a
physical observable B. Projection operators P̂i and Q̂j are said to be orthogonal

if their commutator amounts to zero, that is, [P̂i, Q̂j ] ≡ P̂iQ̂j − Q̂jP̂i = 0 for all
|ψ⟩ ∈ H; equivalently, the subspaces onto which they project are orthogonal. In
QM, commuting operators correspond to compatible observables, that is, prop-
erties that can be measured simultaneously; thus, commuting projectors are
associated with propositions that can be simultaneously asserted in some sense.
But, in general, quantum mechanical operators do not commute, so that their
corresponding physical observables are said to be incompatible. In particular, if
[P̂i, Q̂j ] ̸= 0 then their corresponding propositions Pi and Qj cannot be jointly
asserted in any meaningful way. Equipped with logical operators, the quantum
mechanical analog of the map Φ in equation (3) then becomes a mapping from
the Borel subset B(R) onto a complete orthomodular lattice LQ of quantum
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logic, a structure of propositions in which the distributive law from classical
propositional calculus no longer holds. As it stands, it becomes difficult to de-
fine a quantum mechanical object the same way it was done in Classical Physics.
Since a thoroughgoing determination is no longer possible, physical systems can
only — if ever — be constituted incompletely by means of the restricted set of
their objective properties (Mittelstaedt 2009). Roughly speaking, at any given
time, only one half of the classical phase space properties can be meaningfully
assigned to a quantum system.10 Finally, it will be useful to observe that the
corresponding projectors P̂1, P̂2, . . . , P̂n of a self-adjoint operator Â are pairwise
orthogonal so that equation (6) can be rewritten as

|ψ⟩ =
n∑

i=1

|ai⟩⟨ai|ψ⟩ = 1̂|ψ⟩, (9)

that is, the sum of all projection operators |ai⟩⟨ai| constitutes a resolution of
the identity in H.

3.2 KS theorem and contextuality

Because the quantum mechanical formalism vastly disagrees with the picture of
Classical Physics on what concerns property attribution, one could ask whether
there is a way to go beyond the statistical predictions of measurement out-
comes11 and, in a sense, complete quantum theory. Historically, ‘completion
approaches’ have been called hidden-variable theories because they posit a set
of observably occult parameters that would assure definite (preexistent) prop-
erties to quantum systems. The question, then, is whether or not physical
observables can be interpreted in terms of definite, albeit unknown, actual val-
ues pertaining to a quantum system. This was answered negatively by Kochen
and Specker in 1967. Let us pave the way to their no-go theorem by further
developing the posed question.

Given any quantum state of a system with observables A, B and C, is there
a way to respectively assign numerical values v(A), v(B) and v(C) to those
observables?12 Classically, there are no conceptual problems in constructing
such valuation functions since, as we saw in section 2, to each physical observable
A there corresponds a function fA : S → R such that the value of A in the state
s ∈ S is just the value of fA at s, that is, fA(s) ≡ vs(A), where we defined
vs as being the classical valuation function. Further, let h : R → R be a real-
valued function and define a new physical observable h(A) by requiring that its

10What we have in mind with such an assertion is the canonical commutation relation
[q̂j , p̂k] = iℏ δjk.

11If the state of a system is an eigenstate of the operator to which its observable is being
measured, then clearly the associated eigenvalue is the uniquely predicted result. But, in
general, quantum mechanical probabilities less than unity prevail.

12The tacit assumption here is that of non-contextuality: if A is compatible with both B
and C, but B and C are incompatible observables, the value assigned to A will not depend
on whether A is being jointly measured with B or C (Mermim 1993).
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corresponding function fh(A)(s) ≡ h(fA(s)) for all s.
13 Employing the definition

of vs, it follows that both physical observables h(A) and A satisfy the functional
composition principle (FUNC )

vs(h(A)) = h(vs(A)) ; ∀ s ∈ S . (10)

Equation (10) is reasonably telling us that the value of a function of a physical
observable is equal to the function evaluated on the value of that observable.
Going back to QM, apart from the special case where a system is in an eigenstate
of an operator, there is not an obvious way to construct a quantum valuation
function since, within the minimal interpretation adopted here, it is not assumed
that an observable has a value before it is measured.14 However, there are some
reasonable conditions that should be applied in constructing a global valuation
v on the set of all bounded, self-adjoint operators on H, namely:

(i) the value-rule holds, that is, the valuation v(Â) ∈ R belongs to the spec-
trum of the operator Â;

(ii) the FUNC principle holds, that is, v(h(Â)) = h(v(Â)) for any real-valued
function h.

These requirements suggest the following. First, if two operators Â and B̂
commute, then the global valuation is additive in the sense that, for all |ψ⟩ ∈ H,

v(Â+ B̂) = v(Â) + v(B̂). (11)

Second, if again [Â, B̂] = 0 for all |ψ⟩ ∈ H then

v(ÂB̂) = v(Â)v(B̂). (12)

From this last equation, let Â = 1̂, then v(B̂) = v(1̂)v(B̂), thus, v(1̂) = 1
(provided that v(B̂) ̸= 0). This becomes interesting if the valuation function is
applied to projection operators. Recall that projection operators play the role of
propositions in QM and, as such, their eigenvalues are either 0 or 1. Hence, the
global valuation of any projection operator P̂ is either v(P̂ ) = 0 or v(P̂ ) = 1.
Moreover, we saw that a set {P̂1, P̂2, . . . , P̂n} containing the projectors of the
spectral decomposition of a self-adjoint operator Â forms a resolution of the
identity,

n∑
i=1

P̂i = 1̂. (13)

It implies at once that

v(1̂) = v

(
n∑

i=1

P̂i

)
=

n∑
i=1

v(P̂i) = 1, (14)

13We have fh(A) ≡ (h ◦ fA) : S → R. Thus, h(A) is defined by saying that its value in any
state s is the result of applying the function h to the value of A (Isham and Butterfield 1998).

14Because quantization schemes are still an open problem, it is not even obvious if the
quantum valuation function should be over the physical quantity A or the operator Â (see
Isham 1995). Here, we take the latter approach.
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which means that, whenever we have a collection of n pairwise orthogonal pro-
jectors P̂i = |ai⟩⟨ai|, there is a single P̂i for which v(P̂i) = 1, while v(P̂j) = 0
for all i ̸= j. There are n different ways of associating the value 1 with only one
of these projectors (that is, with one of the vectors |ai⟩). If we consider other
distinct orthogonal bases in H and assume that the value (1 or 0) associated
with that vector is the same, irrespective of the choice of the other basis vectors,
then we are led to a contradiction and hence our primary hypothesis, the global
valuation function, must be contested. This is, in fact, the KS theorem:

KS theorem. There is no global valuation function if the Hilbert space H is
such that dim(H) > 2.

The KS theorem precludes the existence of global valuation functions when-
ever the dimension of the Hilbert space dim(H) is greater than 2. To answer our
original question, an interpretation of physical observables in terms of definite,
actual values pertaining to a quantum system is problematic since no global
valuation exists in order to globally assign definite, actual values to projection
operators. Instead, a value ascribed to an observable A must depend on some
specific context from which A is to be considered. In algebraic terms, the valu-
ation function v [A] over the algebra A is (once again) a global valuation if A is
the set of all bounded, self-adjoint operators on H. We say that C is a context
if C ⊂ A is a commutative subalgebra generated by the set {Â1, Â2, . . . , Ân}
of bounded, self-adjoint operators on H. At last, we define a local valuation
v [C] as a valuation function over a context C. Yet again, the KS theorem pre-
cludes the existence of global valuation functions such as v [A], so that Hilbert
spaces with dimension greater than 2 admits local valuations only. This quan-
tum mechanical feature is known as contextuality, that is, one can have a set
of projectors that commute in a given context, i.e., propositions (or properties)
that can be simultaneously asserted (or measured), but that no truth-value can
be globally assigned to them in the totality of contexts (see de Barros, Holik,
and Krause 2017); hence, quantum theory is said to be contextual. However,
whereas an epistemic reading of contextuality says that measurement outcomes
of an observable A depend on whether another set of physical observables are
being jointly measured with A (Peres 2002), an ontic reading focuses on the
orthodox structure of Hilbert spaces to claim that, regardless of measurements,
contexts are bases (or complete sets of commuting operators) to which their pro-
jectors cannot be interpreted as preexistent properties possessing definite values
(de Ronde 2019).

We encourage the reader to consult both the original (Kochen and Specker
1967) and more recent proofs of the theorem. Numerous discussions surrounding
contextuality and its implications are amalgamated in the reference (e.g., Isham
1995; Mermim 1993; Amaral and Cunha 2018). In particular, we will now follow
the work done by de Ronde and Massri (2016) on invariance of quantum states
as it relates to the KS theorem.
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3.3 Invariance of quantum states: a corollary to KS

To begin with, let us note that the algebra of observables in Classical Physics
is commutative, hence the classical local valuation function always coincides
with a global valuation (reflecting the Boolean structure of the lattice LC and
the Principle of Thoroughgoing Determination embedded in it). Moreover, the
laws of both classical mechanics and relativity theory are invariant under their
respective group of transformations; in particular, nomological and dynamical
properties are consistently translated between different frames of reference. As
we saw, the fulfillment of these conditions is what underpins classical objectivity
and allows one to speak of the state s ∈ S as being an actual state of affairs
— ASA, as it was called. Algebraically, this corresponds to the mathematical
feature of consistently pasting together multiple contexts of local valuations into
a single global valuation function, to which we call such feature as value invari-
ance (VI ). One can be motivated to specify a VI with respect to nomological
and dynamical properties, VINP and VIDP, respectively. If both VINP and
VIDP are satisfied (and hence we get VI ) then we have an ASA. In reality,
the invariance of the valuation of both the sets of nomological and dynamical
properties of a state s ∈ S is, effectively, what reifies an actual state of affairs in
the classical picture. In quantum theory, however, the algebra of observables is
non-commutative, so that the KS theorem prohibits global valuations from ex-
isting and imposes restrictions over a VI : even though the state-vector |ψ⟩ ∈ H
is defined to be invariant under rotations, it is not a mathematical invariant
of the kind needed to provide an interpretation in terms of objects possessing
definite physical properties. More specifically, although the invariance of nomo-
logical properties (VINP) is respected in the formalism, valuations of dynamical
magnitudes are not preserved under rotations (failure of VIDP) and thus we
do not have, in general, VI in QM. Therefore, within the quantum mechani-
cal formalism, one cannot reify the vector |ψ⟩ as an ASA. This was shown by
de Ronde and Massri (2016) through a corollary to the KS theorem which we
reproduce next.

Corollary. If dim(H) > 2, then the VIDP of a vector |ψ⟩ ∈ H is precluded.

Proof. We refer the reader to the proof in de Ronde and Massri (2016), but
the basic idea consists of submitting a vector in Hilbert space to a sequence of
rotations. The authors showed that this, in turn, exhausts the local valuation
function defined over a maximal context.15 The failure of VI leads to the stated
result.

In their work, de Ronde and Massri pointed out that, since invariance of
nomological properties is a necessary but not a sufficient condition to char-
acterize a physical system, one cannot interpret a vector as being an actual
individual entity. This is our cue to resume the discussion regarding bundle and

15We say that a context A is maximal if, given a self-adjoint operator B̂ such that B̂Â = ÂB̂
for all Â ∈ A, then B̂ ∈ A.
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substratum theories of objects — we are finally ready to make our case against
them.

4 Bundle and substratum theories (reconsidered)

When we left the discussion around bundle and substratum theories in order
to explore the machinery of quantum mechanics, we saw that, despite all the
problems surrounding the metaphysical dispute, both theories were equally suc-
cessful in accounting for property possession and for individuality of concrete
particulars, agreeing with our pre-theoretic intuition that such entities are indi-
viduals and, as such, with the Boolean structure of Classical Physics. This, in
turn, created what was called an underdetermination problem of metaphysics
by physics, inasmuch as our physical theories were completely silent with re-
spect to their preference of bundle over substratum frameworks, and vice versa.
As it happens, the situation in QM is even more dramatic. While it is mostly
considered that Classical Physics is at least committed to the notion of individ-
uality of physical systems, objects in quantum theory can either be interpreted
in terms of individuals or, unprecedentedly, as non-individuals (see again French
and Krause 2006, chap. 4).

To see that, recall the PII: it states that there are no numerically distinct
indistinguishable objects. Classically, only a weak version of the PII, such as
PII(1) (in which intrinsic properties and relations are assignable to an object),
can survive the subtleties of classical physical situations. In quantum theory,
however, a textbook-example such as two electrons in a box serves to decimate
the PII in just a back-of-the-envelope calculation: compose the Hilbert space
of two electrons in accordance to equation (4) and then apply the expectation
value to any observable; the result obtained is invariant under particle permu-
tation. There are no physical means whatsoever to tell which electron is which.
Therefore, it is said that both electrons lost their individuality in some sense.
Accordingly, physical systems are no longer subject to the Maxwell-Boltzmann
statistics; the latter becomes obsolete in QM, and one needs to comply with
the formalism by adopting the so-called Fermi-Dirac and Bose-Einstein statis-
tics. To the founding fathers of QM, such as Schrödinger, this was enough to
abandon the individuality of quantum mechanical entities and adopt the frame-
work of non-individuals (French and Krause 2006, chap. 4; see also Arenhart
2017). But then, again, that would undermine the metaphysical details dis-
cussed in section 2 in the following sense: the failure of PII implies the failure of
bundle theories in accounting for the individuality of concrete particulars, but
nothing related can be said about the substratum approach to individuality (or
perhaps other weaker versions of bundle theories such as the one presented by
Rodriguez-Pereyra 2004). Actually, one could even argue that QM exposes the
limitations within the strategy of exhausting an object solely into its constitu-
tive properties, vindicating the need for a substratum in order to constitute and
individualize concrete particulars (a related claim may be found in French and
Krause 2006, chap. 4). Thus, quantum theory takes the underdetermination of
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metaphysics by physics to an upper level. The space of metaphysical discourse
is expanded in a way to cover both metaphysics of individual systems (through
substratum theory) and non-individual systems. If Classical Physics made us
turn all the way ‘back to square one’, QM surpassed the rules and changed the
game itself. We believe, however, that the new rules are in our favor.

It was stated that, amid the well-known disparities between bundle and sub-
stratum theories, both frameworks were inherently committed with the basic
operation of property assignment via PTD, that is, given a property P and
a particular a, either a possesses P or else it possesses ¬P . In the physicist
jargon, we were then able to show that such attribute assignment is equivalent
to physical theories to which the notion of physical observables (properties) are
‘isomorphic’ to propositions about physical systems. Hence, we can say that the
instantiation of properties by concrete particulars is on equal footing with the
assignment of truth-valued propositions describing physical systems. In partic-
ular, it was shown that Classical Physics is a fertile soil for both bundle and sub-
stratum theories, since the classical formalism contains in it a Boolean structure
of definite-valued propositions suited enough to accommodate the PTD. How-
ever, as we have seen all throughout this work, such feature is simply another
description of what is completely untenable in quantum theory: as a result of
the algebra of non-commutative observables, the KS theorem follows from the
quantum mechanical formalism itself to preclude a global assignment of preexis-
tent values to projection operators (properties) of physical systems. One cannot
assert values to properties of a quantum system because there are no definite
values to be asserted in the first place. Our approach aims at the conceptual
foundations shared by both bundle and substratum theories, to which one finds
the PTD as the common ground they stand. Albeit a solid bedrock in Classical
Physics, the PTD, and hence bundle and substratum theories, does not survive
the restrictions imposed by QM and, in particular, the KS theorem.

In other words, instead of concentrating on whether distinct versions of
the bundle theory could be cooked up to account for indiscernible quantum
entities, and whether substratum theories are up to the job, we have advanced
an argument to the effect that a fairly neglected principle of both theories (the
PTD) fails in quantum theory. That brings both metaphysical theories down
in a single stroke, showing clearly that quantum mechanics may be profitably
used as a test field for metaphysical theories (a claim advanced, for instance, in
Arenhart 2012, Arroyo 2020). Obviously, one may attempt to weaken the PTD
in order to account for the indeterminacy of quantum theory, but then, such an
account still has to be worked out in details, and it is not clear that what will
result will still have the attractions that the original theories had to begin with.

Instead of speculating on how such theories could be modified to resist the
KS argument, it is more interesting in this moment to check how deep the re-
sult goes. It affects even recent modifications of bundle theory, without having
to delve into the details of which version of PII is valid or not. For instance,
Rodriguez-Pereyra (2004) made a compelling argument in favor of bundle the-
ory without the need of any PII version; indeed, the author was able to refute
the PII within his version of bundle theory. Nevertheless, that’s immaterial to
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how the approach deals with property possession, and the KS kind of argu-
ment presented here can be applied to generate trouble to Rodriguez-Pereyra’s
bundle theory, since it makes use of the very account of attribute assignment
that does not survive the results of quantum theory. Equivalently, Jago’s es-
sential bundle theory (Jago 2018), which attempts to circumvent problems of
distinguishing between essential and accidental property attribution in quantum
theory will also have problems with the KS argument. In order to account for
the distinct modal status of some properties, one still needs to provide for a
consistent thorough distribution of truth values for the propositions attributing
properties to entities (the PTD), while making a distinction (that Jago is willing
to ground) between essential ones and non-essential ones. The fact that some
properties are essential while others are not essential does nothing to prevent
the argument above from running. Furthermore, Jago’s approach requires that
spatio-temporal location is a definite property constituting every bundle. Given
that spatio-temporal location may be undefined in some contexts in QM, this
approach too faces the consequences of the argument developed here.

Notice that this is a general argument against versions of bundle theory
and substratum theory that are willing to account for property attribution and
composition. The simplicity and explanatory power of such theories make them
appealing at first; however, the KS theorem makes for such theories unable to
account for quantum entities. This test of such theories needs not discuss the
issue of individuality. This, it seems to us, is an advantage, given that the
rod for these theories is blocked independently of the problem of individuality,
already much discussed in the literature.

5 Conclusion

In this work, we attempted to enrich and potentially enlighten an old discussion
regarding the nature of concrete particulars by welcoming into the conversation
quantum theory and recent developments on invariance of quantum states as it
relates to the Kochen-Specker theorem (as developed by de Ronde and Massri
2016). We have argued that current versions of both bundle theory and substra-
tum theory all adopt a version of what we have called (following Mittelstaedt)
the Principle of Thoroughgoing Determination, which requires that a particular
either instantiates or does not instantiate any given property P . This principle
is vindicated by bundle and substratum theories by the very approach they offer
on the constitution of a concrete particular. We have shown that this principle
is untenable when QM enters the stage, so that these approaches to particulars
are not consistent with quantum theory. Of course, this opens the door for
structuralist accounts of quantum entities, but that was not the topic of our
discussion.

A further consequence of the result being advanced here concerns metaphys-
ical underdetermination. It was argued, for instance, by French and Krause
(2006, chap. 4), that QM underdetermines its metaphysics of particular objects.
That is, as we have discussed, quantum theory, when understood as dealing with
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objects (i.e., as providing for an object-oriented ontology), may be interpreted
as dealing with individual objects (whose principle of individuality is provided
by substratum theory, and not by bundle theory) or else with non-individual
objects (not individuated, of course).16 By taking into account only the is-
sue of individuality, French and Krause were able to argue that a substratum
theory may live with indiscernible quantum entities, given that individuality is
provided for by the substratum. However, this focus on the problem of individ-
uality somehow blinded them to the fact that substratum theories (and bundle
theories without the PII too, if those were taken into account) are clearly incom-
patible with quantum theory due to the KS theorem. As a result, substratum
theories are also not really an option to account for those entities’ individuality;
that is, those theories are not an option to account for the very objecthood of
quantum entities if those items are understood as concrete particulars. If that
is correct, then, only the non-individuals interpretation is left as a legitimate
metaphysics of concrete particulars. But is it? Well, it all depends on how
property possession for non-individuals is accounted for, and non-individuals
have a nebulous metaphysics, to say the least. But that is an issue for another
discussion.
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